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Wavelet analysis of vortex tubes in experimental turbulence
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This paper proposes a method to study vortex tubes in one-dimensional velocity data of experimental
turbulence. Vortex tubes are detected as local maxima on the scale-space plot of wavelet transforms of the
velocity data. Then it is possible to extract a typical velocity pattern. The result for data obtained in a wind
tunnel is consistent with those of three-dimensional direct numerical simulations.
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By using direct numerical simulations and bubble/ N-12i-1
cavitation experiments, it has been established that turbu- v[n]:<v>+j20 kzo 0w [ n]. (1)

lence contains vortex tubés—4|. Regions of intense vortic-
ity are organized into tubes. Their radii and lengths are

respectively, of the orders of the Kolmogorov lengjfand scale of the wavelet functiow; ,[n] and its position on the

the integral length.. Vortex tube_s occupy a small fraction. of x axis, respectively. The wavelet transfoiim is the inner
the volume and are embedded in a background flow, which 'ﬁroduct ofv[n] with the wavelet functiow, 'k[n] and rep-

random and of large scales. _ resents a signal variation of the scale=2N"1~15x around
Especially when the Reynolds number,Rehigh, effects e positionx=2N"Tkéx [11,17.
of vortex tubes on the velocity field are of inter¢4i. The We systematically detect vortex tubes with different
velocity signal at small scales is enhanced only in a fractiorscales and strengths as local maxima on the scale-space plot
of the volume. This flm_e—st_ructure_ intermittency is attribut- o¢ ;,J,Z’k/@ik% Here(fzik> is the second-order moment com-
able to vortex tubes. With increasing the Reynolds numberpyted for each of the scales, corresponds to its mean energy,
the flatness factor of the velocity derivative becomes highand reflects both tubes and the background flow. The circu-
This means that turbulence becomes more intermittent.  |ation flow of a tube of the siz&” at the spatial position is
However, in direct numerical simulations, the Reynoldsexpected to enhance the Va|UElA92,fk/<l3j2,k> at the scale”
number is always low, Re=200. For the higher Reynolds around the position [6,7,10. If the value ofp?,/(57,) at a
numbers, one inevitably resorts to standard experimentgertain scale-space positidy k) is greater than those at
where a measurement is made with a probe suspended in thgjacent positions, which are indicated by shaded areas in
flow, and merely a one-dimensional cut of the velocity fieldFig. 1, we consider that a tube exists at that position.
is obtained. To study vortex tubes in such one-dimensional The present analysis is based on Haar’s wavelets, each of
velocity data, we propose a method. which is a sharp pulse in space,
The experiments often deal with the velocity components o .
- st : —2L=(N=DP2] - for n=2N"Ik
in the mean-flow direction alonéereafter, the streamwise
velocity u), but the transverse velocity is more suited to to 2V Ik+2N"i"l-1
detecting rotational flows such as those as.sociatedlwith Wi [n]= 4 2l-(N=D/2] for p=2N-ik+oN-i-1
vortex tubes[5-8]. We accordingly use this velocity I

Here(-) denotes the average. The integeandk specify the

N
component. to 2% (k+1)—1

Our method is based on orthonormal wavelets, i.e., self- 0 otherwise.
similar functions localized both in scale and space. There are 2

several known families of wavelef®,10]. With a wavelet
family, wavelet transforms are computed from the signal.
Since a wavelet function has a zero mean, the transform
corresponds to a variation in the signal at a given scale and a
given position. Moreover, since a wavelet family constitutes
a complete orthonormal basis, the transforms retain the same
information as the original data. This advantage makes
interpretation of the results reliable, especially in statistical
analyseq11,12,. FIG. 1. Schematic representation of wavelet transforms on a

Suppose that a function(x) is sampled as a discrete scale-space plot. If the value &f,/(5?,) at the position(j, k)
signalv[n]=v(néx), wheredx is the sampling intervaln exceeds those at the adjacent positisisaded areaswe consider
=0 to 2V~ 1). The wavelet transformation is written as  thatd?,/(#2,) is locally maximal at(j, k).

spatial position scale
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Because of poor localization in scale, Haar’s wavelets wer¢he background flow. 1%>0, the contribution of the circu-

not favored in previous studies. However, they have advaniation flow is small. The transverse velocity is then domi-
tages. First, contrasting to other orthonormal wavelets thatated by the radial inflow, which does not have a specific
oscillate many times in space, Haar's wavelets represercale. To such scale-free motions, our method to detect tubes
single oscillations. Since the transverse-velocity profile of gs insensitive.

vortex tube has the same charadteze beloy, Haar’s wave- The velocity profiles of vortex tubes with=<r, and 6

lets work better in analyses of vortex tubes. With the other_q 5/e nearly the sanj@,13). However, as indicated by the

wavelglts, wedhave analfyzed ohur data. IA tube is destecte% "first term of Eq.(6), the radiusr, of a tube observed along

&eatre,: ytrarg flsr:n(i:es nrolm the v;/ave et/ cienitter. in erc?: r,1t e streamwise direction is different from its true radigsis
aars transio s analogous 1o a Veloclly InCrement. _, 1 _gir? gcod ¢)M2 Thus self-similar functions such

5Z£i;/;1)e:nfa(lxt:rgl)1ésg([:1),2]trjri;tar?;\?g(:htgzgrtr?eas,?a:]yzgtaeti)g- as Haar’s wavelets capture efficiently those tubes. Although
b : y gn. tgere might be contamination from tubes witf®r, or 6

tical results for Haar’s transforms can be interpreted as thos

for velocity increments.

The most familiar model for a vortex tube is a Burgers
vortex. This is an axisymmetric steady flow in a strain field.

In cylindrical coordinates, they are written as
L ar?
4y

(uy,Ug,u,)=(—3ar,0az).

2v
Ug o —
5" ar

)

(a>0),

and
(4)

Here v is the kinematic viscosity. The above E() de-

scribes a rigid-body rotation for small radii, and a circulation
decaying in radius for large radii. The velocity is maximal at
r=ro=2.24(v/a)'? Thusr, is regarded as the tube radius.

Suppose that the vortex tube penetrates(xhg) plane at

the point(0, A). Here thex andy axes are, respectively, in
the streamwise and transverse directions. If the direction

>0, such a drawback is inherent in any of experimental
works.

Hereafter we analyze data obtained in a wind turiBgl
Its test section was:82X 18 m in size. Turbulence was pro-
duced by placing a grid across the entrance to the test sec-
tion. The grid was made of two layers of uniformly spaced
rods, the axes of which were perpendicular to each other. The
separation of the axes of the adjacent rods was 40 cm. The
cross section of the rod wasx@& cm. We simultaneously
measured the streamwise ¢ u) and transverseuv() veloci-
ties with a hotwire anemometer. The probe was positioned on
the tunnel axis 86 m downstream of the grid. The signal
was low-pass filtered at 8 kHz and sampled digitally at 16
kHz. The entire length of the signal was<20’ points.

The mean streamwise velocity is 8.70 m s, The root-
mean-square fluctuatios1?)? and (v?)*? are 0.446 and
0.427 ms?!, respectively. Since the turbulence level
ofu?)MU s less than 10%, we rely on the frozen-eddy hy-

the tube axis i€6, ¢) in spherical coordinates, the stream- POthesis of Taylorg/dt=—Uad/ox, which yields the integral

wise (u) and transverseuv() components of the circulation

flow ug are
u:Acosaue(r) and v=XC030u6(r), 5
with
r2=x?(1—sir? 8 cos ¢)+A%(1—sir? §sir? ¢)
+ 2XA sir? 6'sin cose. (6)

Likewise, for the radial inflowu, of the strain field(4), the
streamwise and transverse components are

_ X(1—sir* 6 cos @) + A sinf §sine cose
- r

u

u(r) (7)

X Sir? 6sing cose+ A(1—sir? §sir? ¢)
r

v= u.(r).

8

If a tube passes close to the proke<{r,) and the tube is

lengthL of 17.2 cm, the Taylor microscaleof 0.858 cm, the
Kolmogorov lengthy of 0.0270 cm, and the microscale Rey-
nolds number Reof 260.

The velocity signal is divided into 2400 segments 6f 2
points. To each segment, we apply the wavelet transforma-
tion (N=13). Then statistics are computed over the seg-
ments. We present results only for the scale=87 (]
=10), i.e., the smallest scale to which our method to detect
vortex tubes is applicable. Results at the other scales are
similar.

Figure 2 shows probability density functiofBDFg of
Haar's transformgsolid line9 and velocity increment&ot-
ted lineg. Since the transverse-velocity PDFs are symmetric,
those of the absolute values are shown. The agreement
between the wavelet transforms and velocity increments is
excellent.

By averaging signals centered at the position where
97 /(07 ) is locally maximal, we extract typical patterns of
vortex tubes in the streamwige) and transversev() veloci-
ties. The detection rate of the local maxima per the integral
lengthL is 3.37 at”’=87. Since a wavelet function is spa-
tially extended, we determine in each case the center position
so that the absolute value of the velocity incremlet(/)|
is maximal. When the increment is negative, we invert the

not heavily inclined ¢=0), the transverse velocity is domi- sign of thev signal. The result is shown in Fig. Golid
nated by the circulation flow. This situation is important. If lines). The u pattern is shown separately féu>0 andéu
A>r,, the velocity signal of the tube is weak and diluted by <0 (designated, respectively, as andu~). We also show
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%‘ y F ] FIG. 4. Conditional average of the transverse velogityor
g 10°F E local maxima ofo? /(57 ,) at /=87. The abscissa is the spatial
'i F 1 positionx normalized by the Kolmogorov length. The error bars
= 10°k 1 denote the statistical fluctuatidi:10), which has been computed
§ after we had removed motions with scalés 87.
£ 10°F 3 . y .
F Gaussian 3 there might be additional contributions from vortex tubes
10 T T L ] with A>r, or >0 and vortex sheets. Previously, velocity
0 1 2 3 4 5 6 patterns of tubes were studied by averaging for large values
wavelet transform __ velocity increment of wavelet transforms or velocity incremeii&-8|. The pat-
root mean square O oot mean square tern shapes are close to those in Fig. 3, but are biased toward

strong tubes. Our results based on local maxima are more
FIG. 2. PDFs of wavelet transfornisolid lineg and velocity  representative of vortex tubes in turbulence.
incrementgdotted line$ at /=8 » for the streamwiséa) and trans- The u* patterns of grid turbulence appear to be domi-
verse(b) velocities. The abscissa is normalized by the root-meany,5ted by the circulation flow, of a vortex tubg13]. There
~2 12 2\1/2__ ~2 2_ :
square ;""}l/‘;ewj,k)l _9i124'<5“ )#=0.0950,(07,)"*=0.169, g g significant evidence for the presence of the radial in-
a'ﬁ“” ) :0'132315 . Wf a(ljsodsgovx_/ tQaussuan distributions ¢, 4 ."A vortex tube is not necessarily identical to a Bur-
With zero means and unity standard deviations. gers vortex. The same conclusion was obtained from direct
_ _ ) numerical simulation$l].

velocity profiles(5) and (7) of a Burgers vortex. It is as-  The tube radius, = 107 observed at’=87 serves as an
sumed that the tube center passes through the probe p03|t|i:ijer limit for the intrinsic tube radius,, which should be

(A=0) and the tube axis is perpendicular to the streamwisggyeral of the Kolmogorov length. With an increase of the
and transverse direction®€0). The tube radius, is de-

termined so as to reproduce thepattern.

Thewv pattern of grid turbulence is close to the profile of 10° ' ' ' ' ' -
a Burgers vortex. Since the pattern is somewhat extended, >
2 10Tk e E
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of = 102 | |
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= F § F: [ local max. 3
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spatial position FIG. 5. PDFs of wavelet transforms of the transverse velocity
Kolmogorov Tength |0j« at /=8%. The abscissa is normalized by the root mean

square(z”;jzyk)l’2 of the whole transforms at the scale. We show PDFs
FIG. 3. Conditional averages of the streamw{gg and trans-  for local maxima off;fk/@fk) and for the whole transformsolid
verse ¢) velocities for local maxima oﬁjz'k/@jz'k) at/=87 (solid lines), normalized by the number of the whole transforms. The frac-
lines). The abscissa is the spatial positionormalized by the Kol-  tion of the scale energy shared by the local-maximum transforms is
mogorov lengthy. We show the streamwise velocity separately for 5.24%. We also show a PDF for the local maxima determined with-
8u>0 (u*) andsu=<0 (u™). The dotted lines represent profiles of out the smaller scal¢+1 (dotted ling. Their energy fraction is
a Burgers vortex. 9.56%.
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scale/, there is increasing importance of inclined vortexin velocity increments, since Haar's transforms are statisti-
tubes. There also exist tubes with intrinsically large radiically equivalent to velocity increments. However, only 10%
[14]. On the other hand, the amplitude of thepattern, cor-  of the scale energy is shared by the above subset of wavelet
responding to the circulation velocity of a typical tube, is of transforms that reproduce the tail of the whole-transform
the order 0f<U2>l/2. The radius of a tube and its circulation PDF. The background flow is energetically predomirjasi.
velocity estimated here are consistent with those obtained Finally, we give additional comments. First, our method
from direct numerical simulationisl,2]. _ to study vortex tubes is crude. They have been studied with
The statistical fluctuation of the transverse veloaitys  three-dimensional direct numerical simulations in more reli-
shown in Fig. 4. Vortex tubes are embedded ina large-scalgy|e ways[1,2]. Nevertheless, our method is useful at high
background flow. Hegce, Zrom the velocity signals aroundgeynolds numbers, where only one-dimensional experimen-
the local maxima o7 /(0§ ), the expansion formulél) (g data are available. Second, although our method is based
had been used to remove motions with scates87 (j  on wavelet transforms for the transverse velocity alone, those
<10) The resultant fluctuation, which mainly reflects differ- for the streamwise Ve|ocity are also useful. For examp|e,
ences of tube parameters, is comparable to that in a direghey could constrain the local strain fie[dee Fig. 2a)].
numerical simulatio2]. Third, our method is intermediate between those of our pre-
The PDFs of wavelet transforms and velocity increments;ious works. We proposed statistical measures based on or-
for the transverse velocity in Fig. 2b) have long tails  thonormal wavelet§12]. Although these measures are not
[4,8,12. It is possible to study this intermittency phenom- relevant directly to tubes, they are robust with respect to the
enon at each scale by comparing a PDF of wavelet transhoice of the wavelets and thus characterize rigorously scale-
forms at local maxima 0§, /(57 ) with a PDF of the whole  space structures of a velocity signal. We also proposed a
transforms as in Fig. %solid lineg. The PDF of the local- method to detect tubes by using the transverse-velocity pro-
maximum transforms has a peak [af ,|=(57)*? and a file of a model tube as a nonorthonormal wavelgL Al-
long tail toward large magnitudes. If the condition for the though a nonorthonormal wavelet transformation is redun-
local maximum is relaxed so as to ignore transforms at thelant, this method provides high-resolution estimates of the
smaller scalg + 1, the result reproduces perfectly the tail of size and spatial position of a tube. We hope that the applica-
the whole-transform PDFRdotted ling. Thus vortex tubes tion of these methods would improve knowledge of small-
account for the long tail of the PDF. The situation is the samescale structures of turbulence.
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